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I Regular Questions

1. (20 points) True or False. If your answer is ”False”, please explain the reason.

(1) If the Markov Decision Process (MDP) is stationary, the planning horizon is infi-
nite, and the discount factor γ ∈ (0, 1), a deterministic optimal policy may not exist
under this MDP.
False. There must exist one that selects a specific action in each state without ran-
domness.

(2) Let Mc define a constrained MDP where the policy must satisfy a constraint such
that Eπ(

∑∞
t=0 γ

tct) ≤ ϵ (where ct denote cost at a time step t) during learning. If
Mc is stationary, the planning horizon is infinite, and the discount factor γ ∈ (0, 1),
a deterministic optimal policy may not exist under this MDP.
True.

(3) Let Qπ and V π represent the action-value function and state-value in a sta-
tionary MDP. Let π∗ define an optimal policy. The expected advantages func-
tion Eπ∗ [Aπ∗

(s, a)] =
∫
a
π∗(a|s)[Qπ∗

(s, a) − V π∗
(s)]da must be equivalent to 0 (e.g.,

Eπ∗ [Aπ(s, a)] = 0) for all state s and action a.
True.

(4) Let Qπ and V π represent the action-value function and state-value in a stationary
MDP. Let π and π∗ define an arbitrary random and an optimal policy. The expected
advantages function Eπ∗ [Aπ(s, a)] =

∫
a
π∗(a|s)[Qπ(s, a)− V π(s)]da must be larger or

equivalent to 0 (e.g., Eπ∗ [Aπ(s, a)] ≥ 0) for all state s and action a.
False. π is not an optimal policy.

(5) In the task of policy evaluation, the Temporal Difference (TD) method tends to
exhibit higher variance yet lower bias in the estimation of value functions V π when
compared to the Monte Carlo (MC) method.
False. MC exhibits lower bias and higher variance.
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2. (20 points) Multi-Armed Bandit (MAB). Consider the stochastic bandit prob-
lem with 3 arms, where the (random) reward associated with the 3 arms for the first
7 rounds are shown in Table 1. Note that these numbers are unknown to the bandit
algorithm. A bandit algorithm A has respectively selected Arms 1, 2, 3, and 1 in the
first 4 rounds (for t in {1, 2, 3, 4}).

Table 1: Arm rewards over time.

Time (t) 1 2 3 4 5 6 7

Arm 1 0.3 0.2 0.5 0.3 0.2 0.4 0.6

Arm 2 0.2 0.3 0.5 0.8 0.5 0.3 0.7

Arm 3 0.1 0.05 0.02 0.1 0.03 0.02 0.01

(1) Suppose A applies the ϵ-greedy algorithm with ϵ = 0.2 at round t = 5. Compute
the chance of each arm being selected.

(2) Suppose A intends to apply the UCB algorithm (with confidence level δ = 0.5)
in the following rounds after t = 4. We want to trace the algorithm for these rounds.
Please show how the algorithm works at rounds t in {5, 6, 7}.
Hint: The UCB algorithm follows

UCBi(t− 1, δ) =


∞ , Ni,t−1 = 0 ,

1

Ni,t−1

∑
t′≤t−1

rt′1{at′ = i}+

√
2 log2(1/δ)

Ni,t−1

, Ni,t−1 > 0 ;

where 1
Ni,t−1

∑
t′≤t−1 rt′1{at′ = i} is the average reward of arm i up to time t− 1, and

Ni,t−1 is the number of times arm i has been selected up to time t− 1.

Solution

(1)

We first calculate the average reward for each arm up to round 4.

Arm 1 is selected at t = 1, 4, so the average reward for Arm 1 is (0.3 + 0.3)/2 = 0.3.

Arm 2 is selected at t = 2, so the average reward for Arm 2 is 0.3.

Arm 3 is selected at t = 3, so the average reward for Arm 3 is 0.02.

We know that the ϵ-greedy algorithm will select the best arm with probability 1− ϵ,
and a random arm with probability ϵ. According to the above average reward, the
best arm for t = 5 is Arm 1 and Arm 2. So we can calculate the probability of
selecting each arm as follows:

Pbest(Arm1) = Pbest(Arm2) = (1− ϵ)/2 = 0.4

Prandom(Arm1) = Prandom(Arm2) = Prandom(Arm3) = 0.2/3 = 0.0667

Finally we get P (Arm1) = P (Arm2) = 0.4 + 0.0667 = 0.4667 = 7/15, P (Arm3) =
0.0667 = 1/15.
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(2)

At t = 5, the UCB for each arm is:

UCB1(t = 5) = 0.3 +
√

2
2
= 0.3 + 1 = 1.3

UCB2(t = 5) = 0.3 +
√

2
1
= 0.3 + 1.414 = 1.714

UCB3(t = 5) = 0.02 +
√

2
1
= 0.02 + 1.414 = 1.434

So Arm 2 will be selected with a payoff of 0.5.

At t = 6, the UCB for each arm is:

UCB1(t = 6) = 0.3 +
√

2
2
= 0.3 + 1 = 1.3

UCB2(t = 6) = 0.4 +
√

2
2
= 0.4 + 1 = 1.4

UCB3(t = 6) = 0.02 +
√

2
1
= 0.02 + 1.414 = 1.434

So Arm 3 will be selected with a payoff of 0.02.

At t = 7, the UCB for each arm is:

UCB1(t = 7) = 0.3 +
√

2
2
= 0.3 + 1 = 1.3

UCB2(t = 7) = 0.4 +
√

2
2
= 0.4 + 1 = 1.4

UCB3(t = 7) = 0.02 +
√

2
2
= 0.02 + 1 = 1.02

So Arm 2 will be selected with a payoff of 0.7.
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3. (30 points) Trajectories, returns, and values.

Figure 1: MDP for Question 3.

Consider the MDP above, in which there are three states, S1, S2 and S3, three actions,
a1, a2 and a3. The transition probabilities and rewards are shown in the line. For
example, taking a1 at state S1 will either transition to S3 with probability p = 0.25 and
reward r = 1, or transition to S1 with probability p = 0.75 and reward r = 2. Assume
that V (S3) = 0, consider two deterministic policies, π1 and π2:

π1(S1) = a1, π1(S2) = a3

π2(S1) = a2, π2(S2) = a3

(1) Show a trajectory (sequence of states, actions and rewards) from S1 for policy π1.
(2) Show a trajectory (sequence of states, actions and rewards) from S1 for policy π2:
(3) Assuming the discount-rate parameter is γ = 0.5, what is the return from the initial
state for the trajectory in (1) and (2)?
(4) Assuming γ = 0.5, what is the value of state S1 under policy π1 and policy π2?
(5) Show the equation representing the optimal value function for state S1, S2. Hint:
using representation like: V ∗ (S1) = a+ b ∗ V ∗ (S2) where a and b are real numbers.

Solution.
(1)-(3) omitted.
(4)
Vπ1(S1) = 0.25× (1 + 0.5× Vπ1(S3)) + 0.75× (2 + 0.5× Vπ1(S1))
Vπ1(S1) = 2.8

Vπ2(S2) = 0.6× (1 + 0.5× Vπ2(S3)) + 0.4× (2 + 0.5× Vπ2(S1))
Vπ2(S1) = 0.5× (2 + 0.5× Vπ2(S1)) + 0.5× (1 + 0.5× Vπ2(S2))
Vπ2(S1) = 2.64
(5)

V ∗(S1) = max
(
1.75 + 0.375× V ∗(S1), 1.5 + 0.25× V ∗(S1) + 0.25× V ∗(S2)

)
V ∗(S2) = 1.4 + 0.2× V ∗(S1)
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4. (30 points) Bellman Operator and Its Variant.

Let the Bellman operator B : RS −→ RS defined as:

(BV )(s) = Eπ[ r(s, a) + γ
∑
s′

P (s′|s, a)V (s′)]

Let the state-maximum Bellman operator Bmax : RS −→ RS defined as:

(BV )(s) = Eπ[ r(s, a) + γmax
s′

V (s′)]

(1) Prove that the Bellman operator B is a contraction operator for γ ∈ (0, 1) with re-
spect to the infinity norm ∥·∥∞. In other words, please show ∥BV−BV ′∥∞ ≤ γ∥V−V ′∥∞
for any two value functions V and V ′. The infinity norm of a value function V can
be defined as that ∥V ∥∞ = maxs ∥V (s)∥.

(2) Please explain whether that the state-maximum Bellman operator Bmax is a con-
traction operator for γ ∈ (0, 1) with respect to the infinity norm ∥ · ∥∞. If yes, please
show ∥BmaxV −BmaxV ′∥∞ ≤ γ∥V − V ′∥∞ for any two value functions V and V ′. If
no, please explain why.

Solutions

(1)
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For any state s ∈ S,
|(BV )(s)− (BV ′)(s)|

=

∣∣∣∣∣Eπ

[
r(s, a) + γ

∑
s′

P (s′|s, a)V (s′)

]
− Eπ

[
r(s, a) + γ

∑
s′

P (s′|s, a)V ′(s′)

]∣∣∣∣∣ .
=

∣∣∣∣∣γEπ

[∑
s′

P (s′|s, a) (V (s′)− V ′(s′))

]∣∣∣∣∣ .
= γ

∣∣∣∣∣Eπ

[∑
s′

P (s′|s, a) (V (s′)− V ′(s′))

]∣∣∣∣∣
= γ

∣∣∣∣∣∑
a

π(a|s)
∑
s′

P (s′|s, a) (V (s′)− V ′(s′))

∣∣∣∣∣
≤ γ

∑
a

π(a|s)

∣∣∣∣∣∑
s′

P (s′|s, a) (V (s′)− V ′(s′))

∣∣∣∣∣ (Triangle Inequality)

≤ γ
∑
a

π(a|s)
∑
s′

P (s′|s, a) |V (s′)− V ′(s′)| (Triangle Inequality)

≤ γ
∑
a

π(a|s)
∑
s′

P (s′|s, a)∥V − V ′∥∞(Infinity Norm)

= γ
∑
a

π(a|s)∥V − V ′∥∞(Probabilities Sum to One)

= γ∥V − V ′∥∞(Probabilities Sum to One)

Since the above holds for any state s, it also holds for the state maximizing the LHS,
such that:

max
s

|BV (s)−BV ′(s)| ≤ γ∥V − V ′∥∞ ,

which means
∥BV −BV ′∥∞ ≤ γ∥V − V ′∥∞ .

(2)

First we show that for a function g, |maxa f(a)−maxa g(a)| ≤ maxa |f(a) − g(a)|.
Assume without loss of generality that maxa f(a) ≥ maxa g(a), and denote a∗ =
argmaxa f(a). Then,∣∣∣max

a
f(a)−max

a
g(a)

∣∣∣ = max
a

f(a)−max
a

g(a) = f (a∗)−max
a

g(a)

≤ f (a∗)− g (a∗)

≤ max
a

|f(a)− g(a)| .

For any state s ∈ S,

|(BmaxV )(s)− (BmaxV ′)(s)| =
∣∣∣(Eπ[r(s, a)] + γmax

s′
V (s′)

)
−

(
Eπ[r(s, a)] + γmax

s′
V ′(s′)

)∣∣∣
= γ

∣∣∣max
s′

V (s′)−max
s′

V ′(s′)
∣∣∣

≤ γmax
s′

|V (s′)− V ′(s′))|

= γ∥V − V ′∥∞
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As in (1), it means that

∥BmaxV −BmaxV ′∥ ≤ γ∥V − V ′∥∞ .
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